
Pylease Documentation
Release 0.3

Bagrat Aznauryan

June 30, 2015

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Workflow . 3

2 Built-in Plugins 7
2.1 Git . 7
2.2 PyPI . 7

3 Pylease Configuration 9

4 Extending Pylease 11
4.1 Extending Existing Commands . 11
4.2 Adding New Commands . 12
4.3 Rollbacks . 12

5 Class Reference 13

Python Module Index 17

i

ii

Pylease Documentation, Release 0.3

If you are working on a fast-changing Python project which needs frequent releases, you might get in trouble by
repeating some routine tasks again and again. These tasks include updating the package version, creating tags in the
source repository, uploading to PyPi or to your own private repository, etc.

To escape this manual mess, Pylease comes eager to help you out by making those processes as simple as possible by
requiring as little as possible.

This documentation includes all the information needed for you to use Pylease, as well as extend it further.

Contents 1

http://pypi.python.org

Pylease Documentation, Release 0.3

2 Contents

CHAPTER 1

Introduction

Pylease works on Python projects that are being managed by setuptools, i.e. have setup.py file in their root di-
rectory. This is enough to make Pylease get things done. Pylease is an extensible modular tool, which enables the
developers to enhance it further. So let us start with the installation first.

1.1 Installation

Pylease is a regular Python package which comes with a command line tool, obviously called pylease. So to start:

$ pip install pylease

And then just check if everything went fine:

$ pylease --version
Pylease version 0.3

1.2 Workflow

The simplicity of Pylease is that it does not require any specific configuration or scripts, it accepts Python projects
just as-is. Although, you can configure Pylease to fully use its features, it is not required and you can just start using
Pylease on a project you were working on for years. So let us consider two scenarios.

1.2.1 Project from Scratch

So to start a new Python project, just create a new empty directory for your project and then use the init command
to create a skeleton for your project:

$ mkdir my_project
$ cd my_project
$ pylease init my_project

Now you have the skeleton of your project ready to be used:

$ ls -LR
my_project setup.cfg setup.py

./my_project:
__init__.py
$ cat setup.py

3

https://pypi.python.org/pypi/setuptools

Pylease Documentation, Release 0.3

import my_project
from setuptools import setup

setup(name='my_project',
version=my_project.__version__)

$ cat setup.cfg
[pylease]
version-files = my_project/__init__.py
$ cat my_project/__init__.py
__version__ = '0.0'

1.2.2 Existing Project

If you have an already initialised Python project, then the first thing you will want to do for feeling the presence of
Pylease, is the following:

$ cd /path/to/your/project/root
$ ls
... setup.py ...
$ pylease status
Project Name: <your project>
Current Version: <project version>

1.2.3 Releasing a Project

The idea of Pylease came while doing some routine tasks during a release process of a Python project, thus the main
focus of it is the release process itself. So Pylease provides the make command to perform an appropriate release. But
before doing anything release related, first check out your current status as it is done for an Existing Project.

So while you are working on a project, the current version defined is the last version the project was released with. As
you can see in initialising a Project from Scratch, the initial version is 0.0, i.e. no release is done yet.

You may ask a reasonable question, why does not the current version represent the version you want to release next?
The reason for that is that it is possible that while working on the project, you might have a minor bug, small feature
that will need a rapid release, so you will need to make a patch or minor level release.

As already mentioned, you perform a release with the help of the make command of Pylease. The main and required
parameter of make command is the release level, which is passed as one of the following:

• --major

• --minor

• --patch

• --dev

For instance, executing pylease make --minor on a project with version 0.3 will update it to 0.4:

$ pylease status
Project Name: example
Current Version: 0.3
$ pylease make --minor
$ pylease status
Project Name: example
Current Version: 0.4

4 Chapter 1. Introduction

Pylease Documentation, Release 0.3

So this is pretty much all what the release is. As a result, you will have your setup.py updated to the new version.
To customize the behaviour of the release process, you might want to take a look at Pylease configuration.

Moreover, if you wish to add your own custom actions to Pylease, you should definitely get into extending Pylease.

For a quick reference, always consider to take a look at --help messages for commands, e.g. pylease make
--help.

1.2. Workflow 5

Pylease Documentation, Release 0.3

6 Chapter 1. Introduction

CHAPTER 2

Built-in Plugins

As you will see in the Extensing Pylease section, you can customize and extend Pylease the way you like. Fortunately,
Pylease comes batteries included, with built-in plugins for most common tasks. Now let us take a look at each plugin
separatelly.

2.1 Git

Pylease supports integration with git. You can enable this plugin with the --git-tag option of the make command.
Consider the following situation:

$ pylease status
Project Name: example
Current Version: 0.3
$ git tag -l
v0.1
v0.1.1
v0.2
v0.3

As you can see the example project has four releases - 0.1, 0.1.1, 0.2, 0.3, and current version is 0.3. So
imagine you want to make a patch release and create appropriate tag in your git repository:

$ pylease make --patch --git-tag
$ pylease status
Project Name: example
Current Version: 0.3.1
$ git tag -l
v0.1
v0.1.1
v0.2
v0.3
v0.3.1

2.2 PyPI

The Pylease PyPI plugin enables to automatically upload your package egg to PyPI. The only prerequisite for this
action is that the package name must be already registered, as well as you must be responsible for the authentication
over the .pypirc file.

To enable this feature during the release process you should just use the --pypi option like this:

7

https://docs.python.org/2/distutils/packageindex.html#pypirc

Pylease Documentation, Release 0.3

$ pylease make --major --pypi

This --pypi part of this command simply does the same as the python setup.py sdist upload.

8 Chapter 2. Built-in Plugins

CHAPTER 3

Pylease Configuration

As you have already seen, Pylease works on an existing project without requiring any configuration. However, at some
point in time you will need to make some configuration to use Pylease fully. The place for Pylease configuration is the
setup.cfg file of your project, under the [pylease] section. Here is an example configuration:

setup.cfg:
...

[pylease]
version-files = my_project/__init__.py

...

Following is the list of all configuration parameters with their descriptions.

version-files A list of files where the version must be updated to the new one. Here is an example value for
this parameter:

version-files = my_project/__init__.py, setup.py

use-plugins A list of external plugins to load. If you have installed example_plugin package in your Python
environment, and want Pylease to use that plugin, you just need to add the example_plugin name to the list
of this parameter.

9

Pylease Documentation, Release 0.3

10 Chapter 3. Pylease Configuration

CHAPTER 4

Extending Pylease

Although Pylease is an Open Source project, it is impossible to consider and include all possible features at once.
Moreover, one may want a particular feature urgently. Even after sending a feature request, he may have no time to
wait for confirmation, implementation and release of that feature. On the other hand, Pylease may get too much loaded
with features that does not get used by everyone.

For this reason, one of the major parts of Pylease is its modular extension system. It allows to develop a separate
Python pakage and optionally plug it into Pylease.

So basically there are two ways to extend Pylease:

• Add before and after tasks for existing commands

• Add new commands

The following two subsections discuss both scenarios with their details.

4.1 Extending Existing Commands

Here is the step-by-setp guide on how to add extensions to Pylease.

The first step is inheriting the Extension class and adding it to your package __init__.py, where you will
place the initialisation code by implementing the load() method. As an instance attribute you will have the _lizy
attribute, which is an instance of Pylease class, and contains everything you need for your extension.

Extending an existing Pylease command is done by adding a BeforeTask or AfterTask (or both) to it using the
Command methods add_before_task() and add_after_task(). What is needed to do is just implement
those classes and add their instances to the command that is the subject of extension. For both BeforeTask and
AfterTask you need to inherit and implement their execute() method, which must include the extension logic.
Also, in case of AfterTask, you are provided with the _command_result attribute, which is the result returned
by the command being extended.

So basically this is the scenario of extending a Pylease command:

• Inherit and implement BeforeTask or/and AfterTask

• Inherit Extension

• In the load() implementation get the corresponding Command instance from the _lizy singleton

• Add the BeforeTask or/and AfterTask instances to the command instance

11

Pylease Documentation, Release 0.3

4.2 Adding New Commands

To add a new command to Pylease it is enough to implement a class by inheriting the Command class and add it
to your package __init__.py. Implementing the Command class is implementing the _process_command()
method. As an additional convenience you can inherit the NamedCommand class instead. This will eliminate the
need to manually specify the name of the command while calling the base constructor. Instead this base class will
automatically parse the command name from the class name by removing the “Command” suffix and using the rest
as the command name. So for example, the init command is defined as a child class of NamedCommand with the
name InitCommand.

As in the case of implementing Extension, here you will also be provided with the Pylease lizy singleton.

4.3 Rollbacks

Even if you ship a perfectly clear extension, which will never crash in any conditions, you have no guarantee for
others. As Pylease is a modular tool, it is possible to plug any number of independent extensions. This means that it is
possible that after your extension task or command is executed, there may be another task executed after, that will lead
to an error. In this case, you might need to rollback all the changes that your extension made to maintain the original
state of the project.

For instance, the Git plugin makes a commit for the changes of version of the project, then creates a tag for the version.
If any error raises after this operations, is it critical to roll them back. Thus, this plugin deletes the last commit and
removes the created tag.

Pylease provides the Rollback class and Stage decorator to implement this feature in your extension. The Stage
decorator enables to have a staged rollback. For example, in case of the Git plugin, if the error occurres in the stage of
creating the version tag, the only rollback step to perform is deleting the last commit.

For reference on using this classes please see the Class Reference for Rollback and Stage

12 Chapter 4. Extending Pylease

CHAPTER 5

Class Reference

class pylease.Pylease(parser, cmd_subparsers, info_container)
The main class of Pylease, which contains all the needed resources for extensions. This class is initialised once
and by Pylease, which is the so called lizy object. It is passed to Command and Extension instances.

info_container
pylease.InfoContainer

Contains information about current status of the project. Minimal information is name and version.

commands
dict

A dictionary of Pylease commands, including commands defined in extensions if any. The values of the
dictionary are instances of Command class.

parser
argparse.ArgumentParser

The root parser of Pylease. Use this object to add command line arguments to Pylease on the same level
as --version and --help.

config
dict

A dictionary representing the configuration parsed from setup.cfg defined under [pylease] section.
If a configuration value in the configuration file is defined as key1 = valA, valB, valC then the
value of the key1 key of this attribute will be an instance of list and be equal to [’valA’, ’valB,
’valC’].

class pylease.InfoContainer
A simple container that maps a provided dictionary to its attributes. This provides the current status of the
project, and the minimal built-in information attributes are the following:

name
str

The name of the project.

version
str

The current versin of the project

is_empty
bool

The status of current working directory, i.e. indicates whether it is empty or not.

13

Pylease Documentation, Release 0.3

set_info(**kwargs)
Used to extend the information about the project.

Example

Below are two options on how to use/extend the InfoContainer:

info = InfoContainer()

Option 1
info.set_info(info1='value2', info2='value2')

Option 2
more_info = {'info3': 'value3'}
info.set_info(**more_info)

Then you can access your info as instance attributes
print(info.info2) # will print 'value2'

class pylease.ext.Extension(lizy)
The entry point to implementing Pylease extensions. Pylease loads subclasses of this class and invokes the
load() method.

_lizy
pylease.Pylease

The Pylease singleton, that is initialised and passed to all subclass instances.

load()
This method is being called by Pylease when all the extensions are being loaded. All the initialisation code
must be implemented in the body of this method.

class pylease.cmd.task.BeforeTask(rollback=None)

execute(lizy, args)
The place where the extension logic goes on.

Parameters

• lizy (pylease.Pylease) – The Pylease singleton that provides all the needed informa-
tion about the project.

• args (argparse.Namespace) – The arguments supplied to the command line.

enable_rollback(rollback=None)
Enables a rollback for the task. The provided rollback gets executed in case of failure in the execution
stack.

rollback
pylease.cmd.rollback.Rollback

The rollback instance for the task.

class pylease.cmd.task.AfterTask(rollback=None)

execute(lizy, args)
The place where the extension logic goes on.

Parameters

14 Chapter 5. Class Reference

Pylease Documentation, Release 0.3

• lizy (pylease.Pylease) – The Pylease singleton that provides all the needed informa-
tion about the project.

• args (argparse.Namespace) – The arguments supplied to the command line.

_command_result
A dictionary containing information by the completion of the command execution.

class pylease.cmd.Command(lizy, name, description, rollback=None, requires_project=True)
This class is one of the main point of Pylease. For adding new commands just inherit from this class and
implement _process_command() method.

__init__(lizy, name, description, rollback=None, requires_project=True)
This constructor should be called from child classes and at least be supplied with at least name and
description.

Parameters

• lizy (pylease.Pylease) – The lizy object, which is initialized and passed by Pylease.

• name (str) – The name of the command, which will appear in the usage output.

• description (str) – Description of the command which will also appear in the help
message.

• rollback (pylease.cmd.rollback.Rollback) – The rollback object that will be executed
in case of failure during or after the command. This parameter may be emitted if the com-
mand does not need a rollback, or may be set in the process of command execution using
the enable_rollback() method, if it depends on some parameters during runtime.

• requires_project (bool) – Boolean indicating whether the command requires to
operate on an existing project. E.g. the init command requires an empty directory.

_process_command(lizy, args)
The method which should be implemented when inheriting the Command. All the command logic must
go into this method.

Parameters

• lizy (pylease.Pylease) – The Pylease singleton.

• args (argparse.Namespace) – The arguments passed to the command line while invoking
Pylease.

add_before_task(task)
Adds a BeforeTask to the Command.

Parameters task (pylease.cmd.task.BeforeTask) – The task to be added.

add_after_task(task)
Adds a AfterTask to the Command.

Parameters task (pylease.cmd.task.AfterTask) – The task to be added.

class pylease.cmd.NamedCommand(lizy, description, rollback=None, requires_project=True)
Same as the Command class, however this class enables a little taste of convenience. You can define a class
having name with a suffix “Command” and it will automatically assign the prefix of the class name as the
command name.

__init__(lizy, description, rollback=None, requires_project=True)
Same as __init__() of Command class, except that the name argument is passed automatically.

class pylease.cmd.rollback.Rollback
This class provides a facility to define a staged rollback process. The scenario of using this class is the following:

15

Pylease Documentation, Release 0.3

1.Inherit Rollback class

2.Define rollback stages as instance methods

3.Decorate each rollback method with Stage decorator, by specifying stage name and priority

4.Enable each stage separately calling enable_stage() method

enable_stage(stage)
Enable particular stage by name.

Parameters stage (str) – Stage name to enable.

rollback()
Execute all rollback stages ordered by priority.

class pylease.cmd.rollback.Stage(stage, priority=0)
Decorator used in custom Rollback classes for associating each method with a stage, and setting priority.

Parameters

• stage (str) – The name of the stage.

• priority (int) – The order priority of the stage to be rolled back. Defaults to 0.

Example

Here is an example of how to use the Stage decorator in combination with the Rollback base class:

class ExampleRollback(Rollback):
@Stage('some_stage', 1)
def some_stage_with_priority_1(self):

pass # your some_stage rollback goes here

16 Chapter 5. Class Reference

Python Module Index

p
pylease, 13
pylease.cmd, 15
pylease.cmd.rollback, 15
pylease.cmd.task, 14
pylease.ext, 14

17

Pylease Documentation, Release 0.3

18 Python Module Index

Index

Symbols
__init__() (pylease.cmd.Command method), 15
__init__() (pylease.cmd.NamedCommand method), 15
_command_result (pylease.cmd.task.AfterTask attribute),

15
_lizy (pylease.ext.Extension attribute), 14
_process_command() (pylease.cmd.Command method),

15

A
add_after_task() (pylease.cmd.Command method), 15
add_before_task() (pylease.cmd.Command method), 15
AfterTask (class in pylease.cmd.task), 14

B
BeforeTask (class in pylease.cmd.task), 14

C
Command (class in pylease.cmd), 15
commands (pylease.Pylease attribute), 13
config (pylease.Pylease attribute), 13

E
enable_rollback() (pylease.cmd.task.BeforeTask

method), 14
enable_stage() (pylease.cmd.rollback.Rollback method),

16
execute() (pylease.cmd.task.AfterTask method), 14
execute() (pylease.cmd.task.BeforeTask method), 14
Extension (class in pylease.ext), 14

I
info_container (pylease.Pylease attribute), 13
InfoContainer (class in pylease), 13
is_empty (pylease.InfoContainer attribute), 13

L
load() (pylease.ext.Extension method), 14

N
name (pylease.InfoContainer attribute), 13
NamedCommand (class in pylease.cmd), 15

P
parser (pylease.Pylease attribute), 13
Pylease (class in pylease), 13
pylease (module), 13
pylease.cmd (module), 15
pylease.cmd.rollback (module), 15
pylease.cmd.task (module), 14
pylease.ext (module), 14

R
Rollback (class in pylease.cmd.rollback), 15
rollback (pylease.cmd.task.BeforeTask attribute), 14
rollback() (pylease.cmd.rollback.Rollback method), 16

S
set_info() (pylease.InfoContainer method), 13
Stage (class in pylease.cmd.rollback), 16

V
version (pylease.InfoContainer attribute), 13

19

	Introduction
	Installation
	Workflow

	Built-in Plugins
	Git
	PyPI

	Pylease Configuration
	Extending Pylease
	Extending Existing Commands
	Adding New Commands
	Rollbacks

	Class Reference
	Python Module Index

